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This report investigates the performance of an active sonar, which is
limited by reverberation, although noise and limitations due to both noise
and reverberation are also discussed. If the transmitted pulse is
nar-owbend, the difference between the frequencies scattered by the
target and the reverberation due to their (hopefully) different motion
relative to the sonar is used to reduce the effect of reverberation. If the
transmitted pulse is broadband. the ability of the processor to decrease
the response to reverberation emanating from scaterers whose radial
distance to the sonar is different from the rafdia distance to the target is
used to reduce the effect of the reverberation. In either case, the
improvement in performance against reverberation due to the processing
is calculated using various assumptions on the nature of the reverberation
and the processing. The effect on the results of varying many of these
assumptions is also investigated. The results may be used to Investigate
under what circumstances a sonar Is limited by noise only, by
reverberation only or by both. In any case, the performance of the sonar
given the average signal power, average reverberation power and noise
spectrum level and other quantities related to the mumptions made may
be estimated.-
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1. Introduction

An active sonar system aims to detect the reflected sound from a
target against a background of interference. In estimating the performance
of the active sonar, it is desirable to be able to calculate the improvement
in signal to interference ratio, which is brought about by the processing of
the output from the beamformer. This report is concerned with this
calculation when the interference consists of white noise (ie with a flat
spectrum) or reverberation (ie sound scattered from all scatterers but the
target) when using either of two types of processing which are described
in the next two paragraphs. Some of the results in this report are available

elsewhere, but not, to the author's knowledge, in a form which provides
sonar modellers with both the necessary basic results and the mechanism
to assess the effect of changes to some important parameters.

One processing option, called doppler processing here, exploits the
fact that the reverberation return and the target return may be at
different frequencies since differences in the motion of the scatterers and
the motion of the target relative to the sonar may induce different doppler
shifts in the returns. The output of the beamformer for a time interval of
length T (the analysis time) is divided into frequency bins by convolving
the output with a (possibly shaded) CW pulse of the desired frequency. If
the doppler shift induced by the target is sufficiently different from any
shift induced by most of the scatterers, there will be Ifte or no
reverberation in the bin(s) containing the target signal and detection of
the target will be limited by noise alone. This report will consider how the
performance of the sonar depends on the difference in the doppler shifts.
The crossover from reverberation limited to noise limited performance of
the sonar may then be deduced. Several assumptions regarding thd details
of this processing option and several different models of reverberation
will be considered.

The above approach to reducing the effect of reverberation relies on
using a narrowband (eg CW) transmitted pulse. An alternative approach to
reduce the effects of reverberation is to use a wide band transmitted
pulse, such as a chirp pulse where the frequency increases at a constant
rate for the duration of the pulse. By convolving the signal from the
beamformer with a pulse with the same frequency behaviour as the
transmitted pulse, the contribution from all scatterers outside an annulus
at a particular range and of width about c/2B, where c is the speed of
sound and B the bandwidth of the pulse, is reduced significantly. When this

1U A,
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particular range coincides with the distance to the target, the signal to
reverberation power ratio is increased due to the reduced effective
scattering area.

In section 2, standard expressions for probability of detection and
false alarm are given. It is noted that under certain assumptions, for a
given probability of false alarm, the probability of detection depends only
on a single quantity (which is half the output signal to interference ratio
and is denoted P and defined by equation [2.9]) and the relationship is
shown in figure 1.

The quantity P is calculated in section 3 when the interference
consists of white gaussian noise only in the two cases of a CW pulse and
an FM chirp pulse and well known expressions for the detection thresholds
are derived in these cases.

Section 4 begins with a discussion of reverberation. A base case is
established from which a comparison of processing options may be
established. The "gain" when a processing option is used is defined as the
ratio of the value of P when the option is used to the value of P in the base
case (the latter value of P being simply the average signal to
reverberation power ratio). For doppler processing, the "gain" is critically
dependent on the assumptions made about the nature of reverberation and
various forms of the reverberation amplitude covariance function are
considered. Although ideally the reverberation will be concentrated at the
pulse frequency, it may be distributed in frequency due to motion of the
scatterers or uncompensated motion of the sonar. Graphs are presented in
section 4.1 of the relationship between the "gain" and the difference
between the doppler shift induced by the target and the central doppler
shift induced by the other scatterers (suitably non-dimensionalised).
Different assumptions of reverberation frequency spread and different
combinstions of functions to shape the transmitted pulse and shade the
comparison CW pulsewith with which the return is convolved are
considered. For the FM chirp pulse, the "gain" is not dependent on the
frequency spread of the reverberation and a graph of "gain" (figure 22) as a
function of bandwidth is presented for comparison in section 4.2.

In section 5, the nature of the graphs with large differences in
doppler shift (doppler processing) or large bandwidth (FM chirp pulses) are
explained by calculating asymptotic series for the gain in each case. These
series provide a means of estimating the "gain" (relatively easily) in

2
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situations not covered by the graphs.

Section 6 provides an example illustrating the results of this report
and section 7 provides a summary of the results presented in this report.

In annex A, expressions for probability of detection and false alarm
are derived under more general conditions than used in the main body of
the report and these expressions are shown to reduce to the standard
equations under the more restrictive assumptions. These more restrictive
assumptions are listed in annex B, where the effect of varying each of the
assumptions is also noted. Assumptions made in deriving the results of
sections 4 and 5 are listed in annex C and effects of varying each of these
assumptions are described.

3
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2. The Probability of Detection and False Alarm

A pulse of the form

z(t) - (2J)0°5 W(t) cos (M(t) + 2xFt) [2.1]

is transmitted for a time K. The function W(t) defines the pulse shape and
is zero unless 0<tK and is normalised so that

K.K
K'o W2(t) dt - 1. [2.2]

F is the centre frequency of the transmitted pulse and M(t) defines the
frequency modulation which is small compared with F i.e. M'(t)/F << 1. The
quantity J is the transmitted pulse average power level (if terms of order
(27cFK)"1 may be neglected). Subsequently, the sound received by an array
of hydrophones consists of background noise, reverberation and the sound
scatterered from the target (if present). On the basis of this sound
received by an array of hydrophones a decision is made as to whether the
target is present or not, The sound at the individual hydrophones is first
combined into beams, each of which contains sound coming mainly from a
particular direction. Each beam output is monitored for a finite time and is
often monitored for many possibly overlapping short time intervals.
Suppose that one of these intervals begins a time T>K after the start of the
pulse transmission and redefine the origin of time t to be the start of the
analysis period which is of length T. Let y(t) be the output of a beam from
the receiver hydrophone array for 0!t2T and on the basis of y(t) it must be
decided whether there is a target present in the beam. It is assumed that
this is done by evaluating the quantity r, where

r - (B2 +C2)0"5  [2.3]

B - T y(t) H(t) cos (N(t) + 2irft) dt [2.4]0F
C - y(t) H(t) sin (N(t) + 2inft) dt. [2.5]

The optimal functions H(t) and N(t) to be used depend on the properties of
the pulse and the expected interference. Usually N(t).M(t) as the
contribution to the value of r from the target echo will then be maximised.

4
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The function H(t) is normalised so that

T1 H2(t) dt = 1. [2.6]

Values of r may be calculated at more than one value of f near to the
transmitter frequency F. A detection will be declared if r exceeds some
threshold R.

Suppose that a coherent target echo of the form

s(t) = (2P)°-5 W(t-D) cos ( M(t-D) + 27tfit +01 ) 0 : D _ t -; E • T

[2.7]

is present during part or all of the analysis period, where P is the average
signal power level in the beam (neglecting terms of order (2tflK)1 ), D is

the time of the start of the target echo, E - min (T,D+K) is the time of the
end of the target echo within the analysis time, fl is the centre frequency

of the signal (approximately the centre transmission frequency F) and e1 is

the signal phase. It is shown in Annex A that, provided certain assumptions
are valid, the probability of detecting the signal in a single look is

Pd e(u+P) 10(2'/(uP)) du [2.8]
,)-Inrpfa)

where p,, is the probability of a false alarm due to the interference level

exceeding the threshold R, 10 is the modified Bessel function of zero order

and P, which is half the signal to interference ratio at the output of the
processor, is give by

P- •Pal2/(4o2) [2.9]

where
E

012= (J0 H(t) W(t-D) cos ( M(t-D) - N(t) ) dt )2 +

D H(t) W(t-D) sin ( M(t-D) - N(t) ) dt )2 [2.101

5I. UNCLASSIFIED
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2 f .T E[ x(t)x(t-v) ] H(t)H(t-v) cos (N(t)-N(t-v)+2gcfv) dt dv [2.11]

0v

with x(t) being the component of y(t) due to interference alone and E[-]
denoting expected value. The probability of detection as a function of P (in
decibels) for various values of probability of false alarm, based on
equation [2.8], is presented in figure 1. The assumptions made in deriving
equation [2.8] and the effect of relaxing some of these assumptions are
described in Annex B.

6
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3. Detection in the Prmesnce of White Noise

If the interference consists entirely of white noise with spectrum
level NO. then

E( x(t)x(u) ] - NO 8(t-u) [3.1]

where 80 is the Direc delta function.

For a CW pulse where M(t) - 0,

Q ( H(t) W(t-D) cos N(t) dt )2 + ( H(t) W(t-D) sin N(t) It )2

[3.2]

o02, 1,2 N0 " 1H2(t) dt [3.3]

so that

P {( Ot H(t) W(t-D) co. N(t) dt)2 + ( H(t) W(t-D) sin N(t) dt)2)

2N0 ;0 H2(t) dt (3.41

which has a maximum value of PT/(2Nd) when H(t) equals W(t), N(t) is a

constant and the analysis period [0,T) coincides with the signal period
[D,E]. This is the same as the detection index (apart from a factor of 4),
defined ,for example in reference [1], chapter 12, and leads to the same
value of detection threshold. In the case where the signal and analysis
periods do not coincide, figure 2 shows the relative degradation in P (is
decrease in P expressed in decibels from this optimal value) for values of
D/T between 0 and 1, assuming that E.T. The different lines correspond to
different combinations of weighting functions W and shading functions H
which are considered in the next section and are listed in tables 2 and 3.
There is a non-zero degradation when the shading and shapng functions
are different even when D0O. If the analysis periods do not overlap, the
maximum degradation is obtained when D/Tmo.5 as for larger values of
DOT, the next analysis interval will contain more of the signal power and
will give a degradation corresponding to (1 -DM) with the weighting and
shading functions interchanged. This maximum degradation is quite large
for some shading and shaping function combinations (eg 20 dB for exp

a
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shading and shaping) but can be reduced by using overlapprig analysis
intervals althouh this increases the processing required and may also
increase the false alarm rate for a particular probability of false alarm
for each analysis period.

For an FM pulse,

2 0 H(t) W(t-D) cos (M(t-D)-N(t)) dt) 2 +

HMWlt-D) sin (M(t-D)-N(t)) dt )2 3]

92- (2N -1()d 3.61

so that

2 N0 0 H
2(t) dt [3.7]

This is maximised when fth analysis period [0,T] and the signal period (D.E]
coincide, N(t) dfiffers from M(t) by a constant and H(t) equals W(t). The)maximum value is the samne asin the CW case.

9
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Let t be a time within ft analysis period (0,T). The reverberation at
time t comes from all scattereirs whore the sum of the tnavel ftie from
the transmitter to the scattere and from the scatlere to the receiver
lies within the rwige ft~v-K~t+vJ, where the transmission istar-ed at time -v
and the pulse lengt is K. The component of fth reverberation from all
scamrest whose total M*ve time is C + : and whosecenfte frequeny and
phase are f and r respectively, may be written

xMt - g(t.17,f .4) W(t-0' an6 ( M(t-0' + 2xftt+ W) t-KCSt (41]

where the phase shf W' (O~sus) is due both to scattering and wave travel.
The function g which may be positive or negative includes all factors;
influencing tOw amplitude such asbeam pattems, propagation loss
scattere reflection coefficient, interference betwee reverberation
from different scatterers and the possibility of a scatterer changing
position. veocity or reflection coefficient for the duration of the pulse.
The pulse shape function W(t-~j is zero unless t s C] !t-K -The
reverberation from all scatteers may then be expressed as

x(t) - 0 g(t.;*.f W8) W(t-C]) cos ( M(t-C]) + 2xft+ 6' ) d;' df do'
(42]

In order to use the equations [A.331 and (A-601 for probability of detection
and false alarm. it will be assumed that the values of B and C, constructed
by using x(t) from equation [4.2] in piace of y(t) in equations [2.4] and (2.5].
are normally distributed and have zero mean. This assumption is valid if

ther are a sufficiently larg number of independent scatterers
contributing to the reverberation. The expected value of x(t)x(u) which is
required to calculate the probability of false alarm.

Ef x(t)x(u)] - JuII-IIE ~.]f6 ~.]rO WtC)Wu~
1-9 u-K - 0 0 I

coe ( M(t-C]).2xM'+0) cos ( M(u-ý".2xf~u+OG dO d9* df di' dfclý dCK
(4-3]

Insuffcient data are available to estimate with confidence the covariance
of g which occurs in this integral. In this report various assumptions are

UNCLASSIFIED
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maeabout the nature of this covariance function. A specific form of the
function is considered in detail in sections 4.1 and 4.2 where the
imroements wo be.mad using doppler processing or FM chirp pulses

resectvel ae discussed. A-discusslon Is giveri in Annex C of the effect
of varying some of the assumiptions made in thee sections. Results are
presentied of the "gain* obtained when different options are used. This
*gain' is defined as the relative Improvement in P ove its value in the
base caese which is defined In the next paragraph. This base case value us
the redio of average signal powe to average noise power over the analysis
period.

The base case ailses if the following simple (but not necessarily
accurate) mode of reverberation is used. Suppose that

E[ g(tq.1r 0) g(uX,*,t.96) - (2111/xK2) 8Nf-P) 6(f"*) b(O8'r) (4 4]

so that all the reverberation return is at frequency p,. reverberation at
diffrent phases is indeopendent and the reverberation from different
ucafterers giving contributions at the same phase are totally correlated.
In this case for the unshaped CW pulse (i.e. W(t)-1, M(t)wO)

Ef x(t)x(u)] I . Acos 2x;&(t-u) [4 5]

and the scaling factors in equation [4.4] are chosen so that the average

reverberation power is Ft If no shading or frequency modulation is used

02 . pt 0 (T-v) cos 2xfv cots2xIqvdv [4-61

W-ft ( Wn2 jfuLI git azjt+u"I [4 71

and(

01 wE-D. [4-81

Ignoring tems of order (2xfm', wihis assumred small, anid assumning

that the reverberation frequency p equals the analysis frequency f, P has

12

UNCLASSIFIED



UNCLASSIFIED

its maximum value when the analysis period [0,T] coincides with the
entire signal period [D,E] so that D-0, TuK and this maximum value is

S-P/R [4.9]

which Is the average signal power to average reverberation power ratio.
This is the base case with which the other options are compared in the
remainder of this report In order to assess the Ogain" achieved. by either
doppler processing with a CW pulse or using an FM chirp pulse in a
reverberation environment with given characteristics. The average
reverberation power R is proportional to the pulse length K (since the
width of the scattering region is cK/2, where c is the speed of sound). This
must be taken into account in sections 4.1 or 4.2 or Annex C when
assessing the effect of a changed pulse length.

In sections 4.1 and 4.2. the following (more realistic) form of the
covariance of g is used:

El g(t,;',t,e') g(u,;*,f",e') ] - 2 R L(f) 6(f'-f)) 8(@'-9j / (xK) [4.10]

where the amplitudes g are independent for different phases, centre
frequencies or path lengths and L(f) gives the frequency distribution of
the reverberation power and is scaled so that the average reverberation
power over the the analysis period is R. Other forms will be considered in
Annex C. The expected value of x(t)x(u) may be written for tmuzt-K,

E( x(t)x(u) I- (R/K) f " L(t) W(t-') W(u-').
t-K( .

cos(M(t-;I-M(u-q)+2xtf(t-u)) df d;* [4.111

For uatmu-K, E[ x(t)x(u) I is given by an equivalent expression with u and t
interchanged. E[ x(t)x(u) ] is zero if It-ul>K. In the cases considered in
section 4, it is shown in Annex C that

E[ x(t)x(u) I - (M/K) L(t-u) W(t-u) cos 2xlL(t-u) [4.12]

where the functions LO, Wo and the quantity IL are defined by equations
[C.24] and [C. 181. In this cae,

13
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o2 -(R/K) LW(v)W H(v) cos 2fv cos2 vv (:v 4.13]

T
" (R/2 K) Jo L(v) W(v) H(v) cos 2x(f-1)v dv (4.141

where Ho is defined by (C.401. The gain G may therefore be written

. K Q1
2

G- T (4.15]
2 f1 L(v) W(v) H(v) cos 27t(f-g)v dv

In sections 4.1 and 4.2, attention will be confined to specific
functions M, N, L, H and W. The latter three are listed in tables 1 to 3. Of
the functions L listed in table 1, the most probable to occur in practice are
functions I or 4, which would be based on stationary scatterers or
scatterers whose radial components of velocity relative to the sonar are
normally distributed. For each of the functions 2 to 4, the parameter a is
approximately half the 3dB bandwidth of the reverberation power. Each of
these functions approach function I as a-+0. The three possible functions
W(t) or H(t) are denoted

1) NO for no shading or shaping
2) EXP for exponential (gaussian) shading or shaping
3) COS for cos squared shading or shaping.

Each are normalised by equations (2.2] or (2.6] and each are expressed
relative to a time origin set at the start of the pulse (W) or the start of
the analysis period (H). The functions W and H in tables 2 and 3 are valid
for CW pulses only, where M(t)-N(t)0.

14
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Table 1

The Functions L(f)

No. L(f) L(v)

1 80f-g) 1

2 a exp(-2irav)
7C ( (f-jg)2 + a2 )

3 (,2asn(-f-107 )1 - O.72inav) if lvi < (O.72itay1

S(f-g42  0 1 lvi 2t (0.727ca)-'
4 12((fU2L)A) exp( -x2 a2 v2 /(In 2))

XO.5 a

TheFunctins Wt)
No. W(t) W(v)

1 (NO) 1 K-v

2 (EXP) !e.5 gQ- _ 21 x(-3/~ef 0-/"-
XO.25 (erf(3))0-5  

erf(3)
3 (COS) fl 0 *5_Q&_2~vK,)) (K-v) (2 + cos, 2nvIK)I3 +-
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No. H(t) 11(v)

1 (NO) 1 T-v

2(EXP) fj-ALL~a&j QM2ý
n- 2-5 (erf(3))0.5 erf(3)

3 (COS) e._W tT05 (T-v) (2 + Cos 2,rvml)3 +
30.5 sin(2nvwm/(2,x)

16
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4.1 CW Transmission

If the transmitted pulse is CW,

M(t) - 0 [4.16]

so that

W(v) - W(w-v) W(w) dw [4.17]
v

-= I (v-w) W1 (v+w) dw [4.18]

where

W1 (x) - W((K-x)/2) [4.191

Assuming that N(t)-O, which gives the maximum gain against noise, a
similar expression may be written for H(v) with H replacing W and T
replacing K throughout. The expressions for H(v) and W(v) from tables 2
and 3 may then be used. If D-0 and T-K,

T

- J H(t) W(t) dt [4,20]
0

and the equation [4.15] may be used to evaluate the gain. This gain is
presented as a function of a non-dimensional parameter co-27(f-g.)T in
figures 3 to 21 for all combinations of the functions L, H and W from
tables 1 to 3. Because equation [4.15] is symmetric in H and W in the cases
considered here, the same gain is obtained if the shading or shaping
functions are interchanged.

The following features may be noted from the figures:

(i) In figure 3, which presents the gain in the case that all the
reverberation is confined to one frequency (function 1 from table 1 for L),
there is some gain when w-O due to the use of a different reverberation
model from the one used in the base case. The difference lies in the
correlation (or otherwise) of contributions to the reverberation from

17
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scatterers with different path lengths.

(ii) The doppler shift of the signal is given approximately by

Af - 2vF/c [4.21]

where v is the radial component of the relative velocity of the target and
sonar and c is the speed of sound,

w - (4nFT/c) v [4.22]

if the reverberation is centred on the carrier frequency (ie A=F) and the
analysis frequency coincides with the signal (doppler shifted) frequency.
Thus co and hence the gain (which is an increasing function of w in all
figures) will be larger for a sonar with a larger carrier frequency F if the
other parameters are unchanged. The value of (o will also be larger for a
longer pulse, but the effect of changing T on the gain is more complicated
for two reasons. Firstly, increasing T will increase the average
reverberation power R, which is proportional to the pulse length unless

the pulse is so long that the average reverberation power from equal areas
at two ranges cT/2 apart differs significantly from one another. Thus the
detection performance will only improve for an increased pulse length if
the gain improves faster than linearly with a). Secondly, when functions 2,
3 or 4 are used for L (figures 4 to 21), the parameter aT is proportional to
T, so that increasing T will move from one line to another giving a
possibly reduced gain.

(iii) Considerable improvements may be made in the gain for a fixed value
of wo by shaping the pulse or using a shading function. The aim of shading or
shaping is to reduce the discontinuities in the reverberation due to the
sudden turning off or on of contributions from a scatterer when t=-+K or
t-4 respectively (shaping) and the sudden start and end of the analysis
period (shading). These discontinuities widen the reverberation spectrum
or the filter spectrum and lead to a reduced gain. The function 1 (no
shading or shaping) has large discontinuities at the ends of the interval
and will give the worst gains. The function 2 (exp shading or shaping) has
very small discontinuities at the endpoints and gives improved gains. The
function 3 (cos shading or shaping) is continuous and has a continuous
derivative at the endpoints. The discontinuity in the second derivative at
the endpoints yields some widening of the spectra, but the effect is much

18
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smaller than in the other cases. Note that H and W should be matched to
have the same degree of continuity as there is little to be gained in
improving H (say) if W is the dominant cause of the decrease in gain. The
possibility that the nature of the propagating medium and the scatterers
may limit the reduction in the discontinuities and therefore the gain
whatever the functions H and W is discussed briefly in Annex C.

(iv) The effect of broadening the reverberation spectrum by using
functions 2, 3 or 4 from table 1 (due to motion of the scatterer or
uncompensated motion of the sonar) depends very much on the function
selected. The reasons for this are discussed in section 5. If the half
bandwidth a is increased, the gain is also increased when (0-0 due to the
decrease in maximum reverberation power brought about by the broadening.
However the increase in gain with co is usually slower with the larger
values of a, due to the increase in reverberation power in the main
analysis frequency band. This slower increase is more marked using
function 2 or 3, where the fall of power with frequency away from the
centre frequency is slow, than using function 4, where the fall is much
faster beyond the 3 dB bandwidth. In fact with function 4 the gain
approaches that with a=O (function 1) for sufficiently large 0), indicating
that there is no longer any appreciable reverberation power in the main
analysis frequency band.
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4.2 Chim FM Transmission

If the transmitted pulse is a chirp,

M(t) - 2nj3(t-K/2)2  0:25K [4.23]

where 203K is the FM bandwidth, so that

W(v) JKW(w-v) W(w) Cos ( 2i$( 2vw - v(v+K) ) ) dw [4.24]
V

K-v

f J-v W1 (v-w) W1 (v+w) cos 2n•vw dw (4.25]
0

where

Wl(x) - W((K+x)/2) - W((K-x)/2) [4.26]

Assuming that N(t)-cos 27co(t-T/2)2, which gives the maximum
contribution from the target echo, a similar expression may be written for
H(v) with H replacing W and T repiacing K throughout. However, the
expressions for H(v) and W(v) from tables 2 and 3 are no longer valid. If
D-0 and T-K,

Q1 -,H(t) W(t) dt (4.27]

and the equation [4.15] may be used to evaluate the gain. This gain is
presented as a function of y - 2nIT 2 (which is n times the
bandwidth-pulse length product) in figure 22 for all combinations of the
functions H and W from tables 2 and 3 and function 1 for L from table 1.
There is very little difference in the gain for the other functions L except
for small values of y. Again, interchanging the shading and shaping
functions has no effect on the gain.

From figure 22, the gain is an increasing function of y. The gain is
proportional to y at all but very small values of y as evidenced by the 3 dB
increase in gain (in decibels) for each doubling of y. Thus the gain is
proportional to the FM bandwidth and to the pulse length. However, as
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noted in section 4.1, the reverberation power will normally be proportional
to the pulse length and the detection performance will therefore not be
improved by increasing the pulse length.
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5- Anorximate Expressions for the Gain

5.1 CW Pulses with lae m

In the cases considered in section 4.1, the gain G may be written

G - 012 / 2 o S(v) cos [v dv [5.11

where

S(v) - L(vT) W(vT) H(vT). [5.2]

For o) sufficiently large and assuming that S is infinitely differentiable,
the integral in the denominator in equation [5.1] (which will be denoted J)
may be expressed, after repeated integration by parts,

S(2n)(1) sin to S(2n+l)(1) cos (0 - S(2n+1 )(0)
J = (-1)n +j [5.3]

n-,0 ,)2n+1 )2n+2

where S(k) denotes the kth derivative of S. J will be dominated by the first
term in the series for which the numerator is non-zero. From equations
[C.18] and [C.34], W(T) - H(T) = 0, so that S(1) - S'(1) - 0. If S'(0) * 0 (it
must be negative since S(x) is decreasing when x > 0),

J - -S'(0)/o,2 - -T2 (T L2(0) + W(0) + H'(0) )/ w2 [5.4]

for large a). After differentiating equation [C. 18] and noting that W and H
are symmetric about t - T/2,

W(o) - -W2 (o). [5.5]

Similarly,

H1(0) - 1H2 (0). [5.6]

Consider now each of the functions L listed in Table .1. If function 1 is
used, all the derivatives of L are zero and
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J - T2 (W2 (0)+H2(0))/o2 [5.7]

provided that the term on the right hand side is non-zero. This will be true
if there is either no or exp shading or shaping but not if there is both cos
shaping and shading. Notice that in figure 3, the gain increases by 6 dB per
doubling of o) indicating that G is proportional to W2 for large co except in
the cos shading and shaping case. If there is cos shading and shaping,

J - T6 (W"2 (0)+H"2 (0))/o)6  [5.8]

and the gain increases by 18 dB per doubling of co.

. If function 4 is used, all odd derivatives of L(u) are zero when u-0 and
all derivatives of L(u) are small when u-T. For sufficiently large (o, the
gain will approach the value obtained above in the function 1 case;
however ca will now have to be larger before this limit is achieved because
the even derivatives of L(u) at u-0 can be quite large, especially for large
values of a. These large values increase the odd derivatives S(2n+l)(0) for
nŽ_2 so that a larger value of ca is required before the term S(3) (0)/006 (say)
may be neglected. This delay in reaching the limit may be seen in figures
16 to 21. For large a and moderate wo, with no shading or shaping,

J - T2 exp(pv2) os wdv

- T2/2 'l(r/p) exp (-4/4p)

where p - x2 a2 T22 / (In 2), which is quite large. Hence the gain is
proportional to exp (W2/4p), which gives the parabolic shape of the gain in
decibels for the smaller values of w) in figures 16 to 21. Note that when 0w

is not too large, the gain is reasonably independent of the shading or
shaping functions used.

If function 2 is used,

L'(O) - -2ica [5.9]

Hence S'(0)*0 whatever shading or shaping functions are used and IS'(O)j
will be larger and hence the gain less as a increases. The gain will still
increase at the rate of 6 dB per doubling of (o. This may be seen in figures
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4to9.

If function 3 is used, equation [5.3] may not be used as S is not
differentiable when 1.18 avT - 1, which occurs within the integration
interval in the cases considered in section 4.1. The upper limit for the
integral in equation [5.1], 1, must be replaced by (0.72 naT)1', which will
be denoted X. Thus,

J - (S'(X) cos (oW) - S'(O)) /O2  [5.10]

- (L'(X) H(X) W(X) cos (woy) - L'(0) - W(O) - H'(0) ) /1 2  [5.11]

This has an oscillating term (with decreasing frequency but increasing
amplitude for increasing a) which is non-zero for any of the shading or
shaping functions as may be seen in figures 10 to 15. The upper and lower
limit of the oscillation grow with w2.
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5.2 FM Pulses with large '

If no shading or shaping is used and the reverberation is of the form
given by function 1 in table 1 with f - l. then

L(vT) -1 (5.12]

W(vT) - T sin (yv(1-v)) / (v) (5.13]

H(vT) - T sin (,yv(1-v))/ (y) (5.14]

and

J - T2 1o sin 2 (yv(1 -v)) / (,v)2 dv [5.15]

oT2 y' sin2 (u(1 -u/y)) / U2 du [5.16]

on letting u - 'v. Now the integrand in equation (5.16] is bounded in
magnitude by an integrable function (1 for 0:5u:1 and 1/u2 for u>1) and

approaches sin 2 u / u2 as yo. By the Lesbegue dominated convergence
theorem (see reference [2], page 53)

lim Ysin2 u(1-u/ du - . lim sin2 u(1-u/ du [5.17]

JO U2  0 Y--o* U2

du [5.18]

- a/2. [5.19]

Thus

J - X T2/2y + 0(y' 5 ) [5.20]

The next term in the asymptotic series is 0(y' - 5) since on letting u -=v,
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Jimr f 7k =;s2 u-u- -sr2 [du 
[5.211

Jim k 47 sin 2 f 1 
V2 ) sin2 (•V)du (5.22)

f du [5.23)

-" -0 u 2

=0 if k < 0,5. 
[.3

This limiting behaviour may be seen in figure 22..

since If other functions L are used, the limiting behaviour is the same,

J= Yf 0 L(u/y) sin 2 (u(1-u/Y)) / u2 du 
[5.24]

where L(O) - 1 and L(v) is a decreasing function of v and the integrand isstill bounded in magnitude by an integrable function and the limit of theintegrand as y--• is still n/2. Equation [5.20] still applies.

If more general shading or shaping functions are used,

J = T2y" o L(vT/y) W(vT/y) H(vT/y) dv 
[5.25]

so that

J - X T2/7y

where

X J liM T 2 ý L(vT/y) W(vT/y) H(vT/'y) dv. 
[5.27]

Now
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W(vT/y) = T f1 W1 (Tv/,-Tw) W1 (Tv/y+Tw) Cos vw dw [5.28]0

- 0 TI W1
2(Tw) cos vwdw = h,(v) (say) [5.29]

as 'y-*o. Similarly,

H(vT/y) - T f H1 (Tv/y-Tw) H1 (Tv/y+Tw) cos vw dw [5.30]0

Tf 0 H1
2(Tw) cos vw dw = h2(v) (say) [5.31]

as y--->. Since IW(vT/y)l and jl-0(vT/y)l are each bounded by a constant times
v"1 for large v, the product IW(vT/y) H(vT/y,)l is bounded by an integrable
function and the Lesbegue dominated convergence theorem implies that

x =f h1 (v) h2(v) dv. 
[5.32]

= (7d2) f H1
2(Tw) W1

2(Tw) dw [5.33]

The equality of the integrals in equations [5.32] and [5.331 is demonstrated
in annex C.3, where it is also shown that the gain has its maximum value
for a large fixed 'ywhen no shading or shaping are used. The gain is
proportional to y and therefore increases linearly with bandwidth.
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To illustrate the use of the results presented in this paper, a simple
example of a sonar attempting to detect a target is considered. In this
section, the average signal power P, the background noise in a 1Hz band, No

and the average reverberation power R will be expressed in decibels (re
1 japascal) and may be calculated using the usual sonar equations as

P - SL-2 PL + TS [6.11
No = NL-DI [6.2]

R SL-2PL+ +S+10logA [6.3]

where SL is the source level, PL is the one way propagation loss to the
target, TS is the target strength, NL the ambient noise level, DI the
directivity index, S the scattering strength and A the reverberating area.

In this example, the sonar transmits 2 second pulses at 4 kHz and the
threshold is set to give a false alarm probability of 1 Os. Suppose that for
the analysis period during which the target signal is maximum,

P - 60 dB (6.4]
No = 48 dB [6.5]

R 85 dB. [6.6]

Consider first the noise limited performance of the sonar ie the
performance of the sonar in the presence of noise only. If the conditions of
section 3 to give a maximum value of P are met,

P = PT/2No - 12dB. [6.7]

Hence, using equation (2.8] or figure 1, the probability of detection is
about 0.8. The signal excess, which is defined as the ratio of P to the value
of P required for a 50% probability of detection (10 dB here) is about 2 dB.

Next consider the reverberation limited performance of the sonar ie
the performance of the sonar in the presence of reverberation alone, If the
conditions of the base case of section 4 apply,

P - P/FR - -25dB [6.8]
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and the probability of detection is 1.04x10 5 , only marginally above the
false alarm probability. The signal excess is about -35 dB. If doppler
processing , as described in section 4, is used, table 4 gives the signal
excess and probability of detection for three combinations of shading and
shaping functions and several values of the radial component of the
velocity of the target relative to the sonar on the assumption of no
reverberation frequency spreading. These are derived by first calculating
the doppler shift Af induced in the signal by the radial speed ( - 2.8 x
radial speed (in knots) for 4 kHz sonar) and using this to calculate o0 =

27rAfT and hence, using figure 3, the gain in P over its base case value. The
signal excess is this improved value (in decibels) less 10 dB as required
for the 50% probability of detection. The probability of detection is found
from figure 1. Note that even with zero dopploer, there is a slight
improvement in signal excess over the base case value due to the different
assumptions made about the nature of reverberation.

Against a combined noise and reverberation background, the high
values of signal excess and detection probabilities above 0.8 would not be
achievable. Instead a value of P given in terms of the value for noise
limited performance Pn and the value for reverberation limited

performance Pr by

P-1 , pnI + Pr-1.

should be used to calculate the signal excess and probability of detection.
Table 5 gives the signal excesses and the probabilities of detection
against the combined background. Note that the signal excess can never be
better than the value calculated against noise alone or the value
calculated against reverberation alone.

If there is a spread of reverberation frequencies, then figure 3 is not
the appropriate one to calculate the gain. If, for example, the spread in the
reverberation frequencies had a bandwidth of 4 Hz and a gaussian shape,
then function 4 from table 1 with aT-4 (a is the half-bandwidth) should be
used. The signal excesses and the probabilities of detection in this case,
using the aT.4 lines in figures 16 to 18 to calculate the gain, are given in
table 6. Note that there is no longer any performance with only one or two
knots of relative radial speed with exp or cos shaping and shading.

If an FM chirp pulse with bandwidths 200,400 or 800 Hz is used,
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instead of the CW pulse with doppler processing, the gain may be
calculated from figure 22 with y =7txbandwidthxpulse length. The signal
excesses and probabilities of detection are given in table 7 and these are
not sensitive to frequency sprdading of the reverberation. Note that this
processing option does not give any useful performance in this case.

Table 4

Signal Excesses (dB) and Probabilities of Detection with Reverberation
Limitations Only (CW Pulse)

Relative Radial No Shading or Exp Shading and Cos Shading and
Soe 1knots) Shaoing Shanina Shapina

SE od SE od SE pd

0.0 -33 0.00001 -31 0.00001 -32 0.00001
0.5 -16 0.00006 -13 0.0002 -3 0.07
1.0 -10 0.0007 22 1. 19 1.
2.0 -4 0.03 30 1. 39 1.
4.0 2 0.8 36 1. 57 1.

Table 5

Signal Excesses (dB) and Probabilities of Detection with Reverberation
and Noise with no Frequency Spreading (CW Pulse)

Relative Radial No Shading or Exp Shading and Cos Shading and
Soeed (knots) Shaoino Shaoing Shaoina

SF Dd SE od SE •1

0.0 -33 0.00001 -31 0.00001 -32 0.00001
0.5 -16 0.00006 -13 0.0002 -4 0.07
1.0 -10 0.0007 2 0.8 2 0.8
2.0 -5 0.02 2 0.8 2 0.8
4.0 -1 0.2 2 0.8 2 0.8
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Table 6

Signal Excesses (dB) and Probabilities of Detection with Reverberation
and Noise and Frequency Spreading (CW Pulse)

Relative Radial No Shading or Exp Shading and Cos Shading and
Soeed (knots) Shaoing Shaoina Shapina

SE od SE od SE od

0.0 -26 0.00001 -26 0.00001 -26 0.00001
0.5 -24 0.00002 -24 0.00002 -24 0.00002
1.0 -20 0.00002 -20 0.00002 -20 0.00002
2.0 -8 0.002 -5 0.02 -5 0.02
4.0 -1 0.2 2 0.8 2 0.8

Table 7

Signal Excesses (dB) and Probabilities of Detection with Reverberation
and Noise (FM pulse)

Bandwidth (Hz) No Shading or Exp Shading and Cos Shading and
_ _Shaping Shaping Shaoino

SE od SE od SE od

200 -9 0.001 -13 0.0002 -12 0.0003
400 -7 0.004 -10 0.0007 -9 0.001

800 -4 0.03 -8 0.002 -7 0.004

51

UNCLASSIFIED



UNCLASSIFIED

7. ummary

The probability of detection of a reflected signal from a target in the
presence of interference depends only on the quantity P, defined by
equation [2.9], for a given probability of false alarm provided certain
assumptions listed in annex B regarding the nature of the interference are
met. This relationship is illustrated in figure 1. Most of the variations in
the assumptions that are considered in annex B and illustrated in figures
23 to 28 do not change the value of P required to achieve a particular
probabilty of detection by more than a few decibels. The variation with the
greatest effect is the rejection of the gaussian assumption.

The quantity P may be estimated if the statistics and other
properties of the interference are known. However, P is highly dependent
on the following factors

i) . the pulse shaping and analysis filter shading functions used
ii) the statistics of the reverberation
iii) the frequency spread of the reverberation and the difference between
the main reverberation and the signal centre frequencies if doppler
processing is used
iv) the bandwidth if FM pulses are used
v) the alignment of the pulse and analysis periods and the alignment of
the pulse and analysis frequencies
vi) the relative values of the pulse length and the length of the analysis
period.

In the presence of white gaussian noise, the maximum value of P is
given by

P - PT/2No [7.1]

where P is the average signal power, T is the pulse length and N. is the

noise power spectrum level. This leads to the familiar expressions for the
detection threshold (eg reference [1] Chapter 12) f

Using specific options regarding the factors listed above, a base case
for detection in the presence of reverberation may be defined where P is
simply the ratio of the average signal power to the average reverberation
power. This base case leads to very poor performance in most cases, but
this performance may be improved by using other options. The resulting
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proportional increase in P is denoted the gain.

Assuming a particular model of the statistics of the reverberation, an
expression for the gain is derived (equation [4.15]) as a function of the
other factors listed above as i) and iii) to vi).

This expression is used to calculate the gain, assuming no
misalignment (see v) above) and equal pulse and analysis periods using
three options each of shading and shaping functions. For doppler processing
in the case of no reverberation frequency spreading, the gain is presented
in figure 3 as a function of co - 2,xAfT, where Af is the difference between
the signal frequency and the reverberation frequency and T is the pulse
length. Similar results are presented in figures 4 to 21 for various options
of reverberation frequency spreading and illustrate the importance of this
spreading and the large differences in the results which may be obtained if
different assumptions are made about the shape of the spreading function.
The spreading could be caused by motion of the scatterer relative to the
sonar (eg sea surface reverberation) or if the sonar is moving by the fact
that all reverberation entering a beam will not have the same doppler
shift. The same effect could be caused if the scatterers change their
properties over time periods less than a pulse length. Figure 22 shows the
gain using FM chirp pulses as a function of y - nWT where W is the
bandwidth. This gain is not sensitive to the reverberation frequency
spreading considered in the doppler processing case. r'he gain is greatest
when no shading or shaping is used.

Asymptotic expressions for the gain for large values of co using

doppler processing or large values of y using FM pulses are derived in
section 5. It is shown that under most circumstances the gain is
proportional to w2 for large co using doppler processing (ie 6 dB
improvement in gain for each doubling of co) and the gain is proportional to
y for large y using FM pulses. The proportionality constant depends on the
shading and shaping functions used and for doppler processing on the
function assumed for the frequency spreading of the reverberation.

The combined effect of noise and reverberation is to give a value of P
calculated as

p-1 - Pn-1 + Pr-1 [7.2]

where Pn is the value of P calculated with interference due to noise only
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and Pr is the value of P calculated with interference due to reverberation

only.

The mis-alignment of the pulse and analysis periods for doppler
processing can give quite large degradations (up to 20 dB using exp shading
and shaping as defined in tables 2 and 3) in the gain. This degradation may
be reduced by overlapping the analysis periods, which necessitates more
processing and may increase the false alarm rate. Misalignment of the
pulse and analysis frequencies using doppler processing produces a
smaller degradation (at worst 4 dB using no shading or shaping) assuming
that the analysis frequencies are separated by TV.

The misalignment of the pulse and analysis periods for FM pulses is
analogous to misalignment of the pulse and analysis frequencies for
doppler processing. Providing the analysis periods are overlapped so that
their starting times are separated by W1 , the maximum degradation is 4
dB when no shading or shaping is used. The misalignment of the pulse and
analysis frequencies for FM pulses is analogous to misalignment of the
pulse and analysis periods for doppler processing. Although the selection
of a different analysis period may reduce the frequency misalignment, the
degradation may be quite large (up to 20 dB for exp shading and shaping as
defined in tables 2 and 3).
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ANNEXA

PROBABILITY OF FALSE ALARM AND PROBABILITY OF DETECTION

When a signal is not present, the output y(t) from the beam-former is
made up entirely of interference x(t). Assume that, in this case, B and C,
as defined in equations (2.4] and [2.5], have a Gaussian distribution with
zero mean. The variance of B is then

var(B) - T [ S(t,u) cos (N(t)+27cft) cos (N(u)+2nfu) dt du [A.1]
00

where

S(t,u) - E[ x(t)x(u) ] H(t) H(u). [A.2]

On letting v-t-u in equation [A.1],

var(B) = [I S(t,t-v) { cos (N(t)-N(t-v)+2i'fv)

+ cos (N(t)+N(t-v)+2nf(2t-v)) } dt dv. [A.3]

Similarly,

var(C) - .1 S(t,t-v) (cos (N(t)-N(t-v)+2iffv)
0v

- COS (N(t)+N(t-v)+27rf(2t-v)) dt dv (A.4]

TT

cov(B,C) = 1 . S(t,t-v) sin (N(t)+N(t-v)+21cf(2t-v)) dt dv. [A.5)
0v

On making the substitution w - T - 2t + v in the second of the inner
integrals in equation (A.3] or [A.4],

S(tt-v) cos (N(t)+N(t-v)+2nf(2t-v)) dt (
V r-v

0.51 T.V S1 (v-w,v+w) cos (N1 (w-v)+N1 (w+v)+2xf(T-w)) dw [A.6]

where
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S1 (x,y) - S( (T+x)/2, (T-y)/2) [A.7]

N1 (x) - N((T-x)/2). [A.8}

Thus,

Tf Ts(t,t-v) Cos (N(t)+N(t-v)+ 27cf(2t-v)) dt dv0 v

n- a1 cos 2fT + a2 sin 271fT
- a COs (2n1T -e1 ) [A.9]

where

T T-v
ca, -0.5 j 0 -T+v S5 (v-w,v+w) cos (21rfw-N1 (w-v)-N 1 (w+v)) dw dv

- a cos El [A.10)

T T-v
CX2 -0.5 f 1f-T+v S1 (v-wv+w) sin (21fw-N,(w-v)-N1 (w+v)) dw dv

a a sin El [A.11]

Similarly,

Sf JS(tt-v) sin (N(t)+N(t-v)+ 2nf(2t-v)) dt dv

- a1 sin 2nfT - a2 cos 2rfT
- a sin (2xff' - F1 ) [A.12]

Thus,

var (B) - o2 (1 + A cos c) (A.13]

var (C) - o2 (1 - A cos c) (A.141

cov(B,C) - o2 A sin c, [A.15]

where

0 S(t,t-vj cOs (N(t)-N(t-v)+2nfv) dt dv {A. 16]
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=0.5 J` v Sl(V-wv+w) cos (2tfv+Nl(w-v)-Nl(w+v)) dw dv
0 *T+v [A.17]

A -a/02 [A.18]

e 2W-T -F-1  [A.19]

The correlation coefficient between B and C is

p = A sin E[A.20]

(1 - A2 cos 2 E)0.5

and the joint probability density function for B and C is

f(B,C) - exp (- B 2 + C2 - A( (B 2 -C2' COS E + 2BC sin F-)

2n(1 -A2)0.502 2o2 (1 -A2 ) [A.21]

On transforming to polar co-ordinates

r - ( B2 + C2)0.5 [A.22]

e - arctan( C/B) [A.23]

the joint probability density function of r and e becomes

f(r,e) - r exp ( - A ). [A.24]
2n (1 -A2)0.5 02 2 02 (1 -A2)

On integration with respect to 0, the probability density function for r

becomes r

f(r) - r exp (- r2 )I(-12 ) [A.25]

02 (1-A2 )0 .5  2 02 (1-A2 ) 0 2 02 (1-A2)

where 1o( ) is the modified Bessel function of order zero, defined for

example in reference [3].
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If JAI - 1, the above analysis breaks down. In this case, the correlation
coefficient between B and C is 1 or -1 depending on the sign of sin E and

var (B) - 2 o 2 cos 2 (e/2 ) [A.26]

var (C) = 2 o2 sin2 (C/2 ). [A.271

Thus

C B tan (l/ 2 ) [A.28]

r =(B 2 + C2 )0 .5  1 3 = l A.29]
Icos (F/2 )1  Isin (c/2 )1

and the probability density function for r is

f(r) = exp (- E2 ).(A.30]

4(27c) c 4 o2

In any case, if R is the threshold described at the end of the first
paragraph in section 2, the probability of false alarm,

Pfa - r f(r) dr. [A.31]

If A - 0 (which is approximately true in most cases considered in
subsequent sections), the probability density function is

f(r) - r exp C2 -- ) [A.32]

02 2a2

and the probability of false alarm is

Pfa m exp (- ). [A.331
2o2

58

UNCLASSIRED



UNCLASSIFIED

Now suppose that a target echo of the form given in equation [2.7) ispresent. The variances of B and C and the covariance of B and C will be thesame as in the interference only case as given by equations [A.4J to [A.6].The expected values of B and C will no longer be zero, but

E[B]., (2P)o-s f W(t-D) cos (M(t-D) + 2nflt +91) H(t) cos (N(t)+2ift) dt

(A.34J
(P,/2)0-5 1 W(t-D) H(t) { cos (M(t-D)-N(t)+2n(f, 4)t+e@) +

cos (M(t-D)+N(t)+2r(f1+f)t+e) } dt [A.35]

(P/2)'.5 Q1 cOS (e1 t ) + Q2 Cos( e1j)} (A.36]

where jE01 cosa D W(t-D) H(t) cos (M(t-D) - N(t) + 2x(f1 -f)t) dt [A.37J

D

.E
Q1 sin a= - IW(t-D) 1-(t) sin (M(t-D) - N(t) + 2it(f1-f)t ) dt [.8

02 cos a I W(t-D) H(t) cos (M(t-D) + N(t) + 2x(fl+f)t) dt [A.39J
jE

Q2 sin a 0 W(t-D) H(t) sin (M(t-D) + N(t) + 27c(fl+f)t) dt. (A.401

Similarly,

E[C] _ (P2)0.5 ( -0_ sin (01 + a) + 0 2 sin (0e + J3) fA.417

The joint probability density function of B and C with signal presentis obtained by substituting (B-B) and (C-C) for B abnd C in the right handside of equation (A.21J (where B and C denote E(B] and E(C] resp,-ctively):
exp ( -(B'B1 2+('C-C 12-AW(B-B •_2-(C-C •2)cos • +2(B-B)(C-C~sin E))

f(JC) -2 ) o (1- A2
2t (;2 (1 - A2)0 -s

[A.42]
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On transforming to polar co-ordinates using equations (A.22] and (A.23],
the various terms in the above equation may be written

(B-B)2 + (C-C)2 - r2 - (2p)o.5 r (Q1 cos (e+e1 +a) + c2 Cos (e-el-13))

+(P/2) (Q12 + 2 0,02 cos (201+a+13) + Q22) (A.43]

(B-B) 2- (C-C) 2 = r2 cos 20 - (2P)0-5 r ( Q1 cos (e-0i-a) + Q2 cos (0+01+43))
+(P/2) (Q1

2 cos (201+2ca) + 2 Q1 Q2 cos (a-03) + Q22 cos (201+203))

[A.44]
2 (B-B) (C-C) = r2-sin 20 - (2P)0.5 r ( Q1 sin (6-0,-a) + Q2 sin (0+01+P3) )

+(P/2) (-Q1
2 sin (201+2a) - 2 Q1 Q2 sin (a-P3) + Q2

2 sin (201+2p3))

[A.45]
and the joint probability density function for r and 0 is

r exp (- XX
f(r,6) 2 02 (1 - A2 .. _ [A.46]

2n o2 (1 - A2)0.5

where

XX - r2(1 -A cos (20-E)) - (2P)" s r (Q1 Cos (0+01 +a) + Q2 cos (0-0•-13))
+A (2P)0'5 r (Q1 cos (6-e1-c•-e) + Q2 cos (e+01+VF-•))
+(P/2) (Q1

2 + 2 Q1Q2 cos (201e+a+P3) + 022

-A (P/2) (Q1
2 cos (20 +2a+E) + 2Q0Q 2 cos (.-13+e) + cos (20, +213-E))

[A.47]
On substituting

0, -0+0 1 +a [A.48]

8 =201 +2c+e [A.49)

0 =oX-13+E [A.50]

the expression XX in the joint probability density function for r and 0'
becomes
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XX = r2 (1-A cos (20'-5))

- (2P)0 .5 r (Q1 cos 0' + Q2 cos (e'-5+O)-A Q1 cos (e'-5) -A Q2cos (-))

+(P/2) (Q1
2 (1-A cos 8) + 2 Q1Q2 (cos (8-0)-A cos 'p) + Q2

2 (1-A cos (5-2o)))

[A.51]

Now the signal phase 01 is essentially random and so to obtain the

probability density function of r and 0', averaged over all possible signal
phases, f(r,O') is integrated with respect to 8 to obtain

r exp ( - --- ) I (x/2o'2(1-A 2))

f(r,0') 2 cs2 (1 - 9 ) 0 [A.52]
27c a2 (1 - A2 )0 .5

where here

XX=r 2 - (2P)0 5r (Q1 cos 0'-A Q2 cos (0'-4)))+(P/2) (Q 1
2 + 2AQ 1Q 2 Cos 4 + Q2

2)

(A.53]
x2= A2 r4 + 2 A r3 (2P)0-5 {Q2 cos (e'-O))-AQ 1 cos 8W1

+r2 [P {Q2
2 (2+A2 cos 2(0'-4))+A 2 Q1

2 (2+cos 2e')-2AQ 1Q2(2cos ) -cos (26'-0)}

.r(2p3)o.5 {A2Q13 cos 0'-AQ 1
2 Q2(cos (8'+4-)+2cos (6'-0))+

Q1 Q2
2 (2 cos 0'+A 2 cos (e'-20)))-A Q2

3 cos (W'-0)}

+(p 2 /4) {A2 Q 1
4 -4AQ 1

3 Q2cos 0) +2 Q 1
2 Q 2

2 (2+A 2cos 20)-4AQ 1 Q 2
3 cOs 0 +A 2 Q 2

4}

[A.54]

If Q2= 0 (which is approximately true in all cases studied),

r exp( r2" r (20P)°5, cOs 8' + (P/2) Q,2) I (x /2a2(1 -A2))
f(r,O') = 2 e 2_1__ 2 )0o [A.55]

21 c.2 (1 - A2)0.5

where

X2 =A 2 r4 -2A 2 r3 (2P)°'5 Q 1 cos 0'+ A r2 F Q1
2 (2+cos 28')

- A 2 r (2P-3 )0 .5 Q 1
3 cos 80 + A2 (F/2)2 Q 1

4  [A.56]

If A = 0 (which is again approximately true in the cases considered),
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r exp (- Lae "0.51 C0
rlc,

f(r,O') = q .[ .7

In any case the probability of detection

Pd = i- " I f(r,e') de' dr.R 0 [A .58]

In the case where 02 = A = 0,

Pd R •_exp(-(2r 2 + P Q1
2)/(4a2 )) 10(r (2P)o. Q5 /(2o2)) dr [A.59]

f e'(U+P) I0(2'/(uP)) du [A.60]--in (Pfa)

on making the substitutions

P PQ 1
2 /(4o2 ) 

[A.61]
u -r2/(2c2) [A.62]

and using equation [A.33].
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ANNEX 8

ASSUMPTIONS MADE IN CALCULATING PROBABILITIES

In deriving equation [2.8] for the probability detection as a function of
probability of false alarm and the quantity P (defined by equation [2.9]),
the following assumptions were made:

(1) The quantities B and C (see equations (2.4] and (2.5]) are normally
distributed.

(2) With interference alone, B and C have zero mean.

(3) The quantity A (see equation [A.18]) is zero.

(4) The quantity Q2 (see equations [A.39] and [A.40]) is zero.

(5) The signal is coherent ie var(B) and var(C) are the same whether the
signal is present or not.

Some of the effects of relaxing these assumptions will be considered
in the remainder of this Annex.

I
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B. 1 The Distribution of B and C

Suppose that B and C are not normally distributed. Instead suppose
that they are independent (assume A-0 so they have zero covariance), they
have zero mean and they are identically distributed with probability
density function f1(') which depends only on the variance a2 and not on any

higher order moments. The probability density function may then be
written

f, (z) - f(z/a)/a [B. 1]

where z represents either B or C and the function f() does not depend on
any parameters. The probability of false alarm may be derived as in Annex
A to be

Pfa -1 Jrf,(r cos 6) f, (r sin 6) de dr [B.2]
RO0

. f .lf2xu f(u cos 0) f(u sin 0) de du (B-3]
R/a 0

where R is the threshold. Thus Pfa is a monotonic decreasing function of

R/o which has an inverse which will be denoted by g(Pfa) - R/i.

Similarly, the probability of detection

- 2x

Pd fR fo r f, (r cos e-B ) f, (r sin O-C ) de dr [B.41

- f 2 u f(u cos 0--B//a) f(u sin 6-C/la) dO du [B.5]
R/o 0

- f u f(u cos e-B/a) f(u sin -- C/ k) dO du [B.6)
g(pfa) 0

where B and C are the mean values of B and C respectively. If f(x) is an
even function with a single maximum at x-0, Pd will be an increasing

function of IB I/a or IC I/a. For a fixed ratio JB/C 1, Pd is therefore an
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increasing function of P (def-ned by equation [2.9]) if 02 is approximately

zero. Hence P is still a sensible measure of detection performance, but, as
in the case of the normal distribution with A*O, the probability of
detection may depend on IB/C I, which in turn depends on the signal
phase.A measure of probability of detection independent of phase may be
obtained (as in Annex A) by integrating equation [B.6] with respect to
phase. Figures 23 and 24 show the variation of this integrated Pd with P

for pfa between 10.7 and 10.2 and

f(x) - 0,5 exp(-Ixl) (figure 23) [B.7]

f(x) - (4n)-0'5 { (.8)"-0- exp(-1.25 x2) + (3.2)"0.5 exp(-.3125 x2)}
(figure 24) (B.8]

The latter function is the sum of two normai distribution functions.
Comparison with figure 1 shows that the value of P required to obtain a
particular probability of detection is higher using [B.7] or [B.8] than using
the gaussian assumption. The difference for a 50% probability of detection
is 5 to 10 dB using equation (B.7] or 1 to 2 dB using equation (B.8]. The
difference is due to the increased height of the "tail" in equations [B.7] and
[B.8] (ie increased values of f(x) for large x) and the consequent necessity
of using a larger threshold to achieve the same false alarm rate.
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B.2 The Mean of l and C

If B or C have non-zero mean (caused (say) by some dominant
scatterer which is not the target), then by direct analogy with the
calculations for Pd in Annex A, Pt, may be written

Pf - " e'(u+Z) Io,(2(uZ)) du (B.91

where R is the threshhold and

Z - (B 2 + C 2 /(2o2) [B. 10]

with B and C being here the mean values of B and C with interference
alone. For a given probability of false alarm, the threshhold R and hence
the probability of detection are increasing functions of Z. Figure 25 shows
the variation of Pd with P for various values of Z and Pa - 10-5. The effect
of increasing Z is to increase the value of P required for a given
probability of detection. Even for Z-5 (which would increase the output
interference power by a factor of 6) the increase in the value of P required
for a 500/6 probability ot detection is only about 4 dB.

(
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B.3 The Quantity A

In figure 1, it is assumed that A (defined by equation [A.18]) is zero.
If A is non-zero, equation [A.25] must be used for f(r) in equation [A.31] to
calculate the probability of false alarm. Further equation [A.55] must be
used for f(r,@') in equation [A.58] to calculate the probability of detection.
For pfa - 10S, figure 26 shows the variation of probability of detection

with P for various values of A. From the figure, it may be noted that
increasing A increases the value of P required for a given probability of
detection, but this increase is less than 3 dB for the largest possible value
of A (-1) for a 50% probability of detection.

In the cases considered in section 4.1 and 4.2, where it is assumed
that the carrier frequency - pulse length product is about 15000 (which is
fairly typical), A is always small (about 10.2) and its effect is
insignificant.

r
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B.4 The Quantty Q2

In figure 1, it is assumed that Q2 (defined by equations [A.39] and

[A.40]) is zero. If 02 is non-zero, equations [A.46]'and [A.51] may be used in

equation [A.58] to calculate the probability of detection. If A-0,

XX - r2-(2P)0 5r(Q1cos O'+Q 2cos ('-8+')) + (P/2)(Q1
2+2Q 1Q2cos (")-)+Q22)

[13.11]

in equation [A.46], so that on integrating equation [A.58] with respect to 0',
Pd may be expressed as in equation [A.59], but with Q1

2 replaced by

Q1
2+2Q 1Q2 cos (8-4)+Q 2

2. Hence

Pd e'(u+P') 10(2/(uP')) du [8.12]

where

P , P (1 + 2xcos (8-) + K2) [B.13]

Kc - Q2/Q1 . [B.14]

For Pfa - 1 Os, figure 27 shows the variation of probability of detection

with P for various values of Q2 averaged over the arbitary phase angle

(8-") (with A=0). From the figure it may be noted that the effect of Q2is

minimal unless 02 is quite large (more than 0.1). Increasing Q2 reduces the

value of P required for a 50% probability of detection but increases the
value required for a high (eg 90%) probability of detection.

In the cases considered in section 4.1 and 4.2, where it is assumed
that the carrier frequency - pulse length product is about 15000 (which is
fairly typical), Q21Q1 is always small (about 105) and its effect is
insignificant.
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B.5 Signal Coherence

Suppose that, due to multipath or other effects, the signal has a
component which has the same characteristics as interference ie the
contributions to B and C from this component have zero mean and non-zero
variance. If k is the proportion of coherent power in the signal, then E[B]
and E[C] are reduced by the proportion k. The increase in the variance of B
and C depends on the exact nature of the interference-like component. If
this component consists of a large number of "signals" with random phase,
then it is of the form

x(t) =Jg(e') W(t) cos (M(t) + 2nft + 0') do' [B.15]
0

where

E[g(e')] - 0 [B.16]

E[g(e')g(e")] = 2(1-k) P 8('-e")/r. [B. 171

The expected value of x(t)x(u) is then

E[ x(t)x(u) ] = (1-k) P W(t) W(u) cos (M(t)-M(u)+21tf(t-u)) [B.18]

and the additional variance in B or C due to the presence of this extra
interference is (using equation [A.1])

T T

"2 (1-k) P o 0 W(t) W(u) H(t) H(u) cos (M(t)-M(u)+2nf(t-u)).

cos (N(t)-N(u)+2nf(t-u)) dt du [B. 19]

T T

, 0.5 (1-k) P f TJ W(t) W(u) H(t) H(u) cos (M(t)-M(u)-N(t)+N(u)) dt du

(8.20]

, (1-k)PQ 1
2 /2 [B.21 )

2 (1-k) P o 2  [B.22]

Now the probability of false alarm may be calculated using equation [A.33]
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in its present form, but the probability of detection is calctlated from
equation [A.59] with 02 replaced by ( o2+ S2). Hence

Pd e"(u+Z) Io(2'(uZ)) du [B.23]
•."-_.2" in(Pfa)/(o-2+s2)

where

P(k) = k P Q12 / 4( a2+ s 2 ) [B.24]

- k P(O) / (1 + 2(1-k)P(O)) [B.25]

and P(O) = P Q1
2 / 4o2 is the value of P (defined by equation [2.91) if k were

zero. For Pfa = 10-5, figure 28 shows the variation of probability of

detection as a function of P(O) for various values of k. It may be noted
from the figure that decreasing k will decrease (slightly) the value of P
required for a 50% probability of detection, but will increase (by up to 6
dB) the value of P required for a 90% probability of detection.
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ANNEX Q

ASSUMPTIONS MADE IN CALCULATING GAINS

In this Annex, generalised versions of equations [4.12] and [4.14] will
be derived (from which these equations follow as a special case). These
equations and the results of Annex A will be used to examine the effect of
modifying some of the assumptions made in sections 4 and 5. These
assumptions are listed at the end of this part and the remaining parts
discuss the modification of each assumption in turn.

Suppose that the covariance of g (see section 4 for a definition of g)
is of the form:

E[ g(t,',f',W') g(u,ý',",f ")] 2 R V(t-u) L(f') 5(f'-f") X(r'-r") 8(8'-O")/(nK)
[C ..1]

where the amplitudes g are independent for different phases and centre
frequencies, L(f') gives the frequency distribution of the reverberation
power, X gives the correlation with different path lengths (a delta
function in section 4), V gives the correlation at different times (constant
in section 4) and the functions are scaled so that the average
reverberation power over the the analysis period is R. The functions V and
X are even. The expected value of x(t)x(u) may be written

E[ x(t)x(u) ]= (R/K) V(t-u) J f L(f') X(ý'-ý") W(t-ý') W(u-ý").
t-K u-K 

-~

i cos(M(t-;')+2nft+e') cos (M(u-t")+2ef'u+e') de' dr dý" dý' [C.21

= (R/K) V(t-u) f f L(f') X(ý'-ý") W(t-ý') W(u-ý").
t-K u-K -

cos (M(t-ý')-M(u-ý")+2xf'(t-u)) df' dc" dý' [C.3)
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= (R/K) V(t-u) { f L(f') cos 2itf'(t-u) df.
f t.K Iu~x(i" W(t-0;' Wu-i")COS (M~t-r0'-M(u-i;")dý'-di;'

- i L(f') sin 2if'(t-u) df'.

f t fuX(ý'-O" WMt-ý) W(u-ý") sin (Mt-O'-M(u-ý")) dý" dý' [C.4)

Now, on letting x = u-7 and y - t-l' and v.t-u,

t-K u-K

0 0 • X(v+x-y) W(y) W(x) cos (M(y)-M(x)) dy dx [0.5]

= W(v) (say). 
[C.6]W(v) is an even function of v (as may be seen by interchanging the order ofintegration and noting that X is even). An alternative expression for W(v)may be obtained by splitting the inner integral into two parts: from 0 to xand from x to K. On changing the order of integration in the first part andcombining it with the second part,

W(v) = Jf(X(v+x-y)+X(v-x+y)) W(y) W(x) cos (M(y)-M(x)) dy dx [C.710 X

- fK K-x (X(v+u)+X(v-u)) W(u+x) W(x) cos (M(u+x)-M(x)) du dx [C.8]f .K f K-u (X(v+u)+X(v-u)) W(u+x) W(x) cos (M(u+x)-M(x)) dx du [C.9•]
o 0

on letting u = x-y and changing the order of integration. On making afurther substitution w = K-2x-v in the inner integral,

WMv = 0.50 K-K (X(v+U)+X(v-u)) W1 (x-u) W1 (u+x) cos(M1 (x-U)-M 1 (u+x)) dx du

0-K+u

[0.10]where

W, (x) W( (K-x)/2) 
[C.11]
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M,(x) - M( (K-x)/2). [C.121

Expressions for the second double integral in equation [C.4] in which sin
replaces cos may be derived in a similar way to obtain

t U
Wl(v) - f'WKflu.K X(ý'-ý") W(t-,') W(u-") sin (M(t-ý')-M(u-ý")) dý" dr' [C.13]

i= .fK f (X(v+u)-X(v-u)) W(u+x) W(x) sin (M(u+x)-M(x)) dx du [C.14]
0 0

= 0 .51K K-u (X(v+u)-X(v-u)) Wl(x-u) W1 (u+x) sin(Ml(x-u)-Ml(u+x)) dx du

0 -K+u
(C. 15]

where W1 is an odd function.

If W and M are symmetric about K/2 (which is true for the CW and FM
chirp pulses and the common shading functions), W1 and M1 are even

functions and

K K-u
W(V) = f K' (X(v+u)+X(v-u)) W1 (u-x) W1 (u+x) cos (MI(u-x)-M,(u+x)) dx du

0 0

[C. 16]

W1 (v)= 0. [C.17]

Additionally, if X is the Kroneker delta function, as in sections 4 and 5,

W(v) = IW(v+x) W(x) cos (M(v+x)-M(x)) dx [C.18]
0

K-v
= 0 W,(v-x) W,(v+x) cos (Ml(v-x)-Ml(v+x)) dx. [C.19]

Now consider the other integrals in equation [C.4]. If L(f') has a main (
peak at f -g, define

L(v) - V(v) " L(x+A) cos 2nfxv dx [C.20]
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LI(v) - V(v) fI L(X+g) sin 2xrxv dx. 
[C.211

The integrals in equation [C.41 may then be written

V(t-u) I L(f') cos 2nrf(t-u) dr'- L(t-u)cos 2g.(t-u) - L1 (tou)sin 27rg(t-u)

"[0C22]V(t-u) I L(f') sin 27rf'(t-u) dt'= L(t-u)sin 2-xg(t-u) + L1 (t-u)cos 2it,(t-u)

[0.23)If L(f') is symmetric about f'=4±, as occurs with the functions considered in

sections 4 and 5,

L(v) - 2 V(v) f" L(x+gI) cos 2nxv dx 
[0.24]

L1(v) = 0. 
[C.25]

In any case,

E[ x(t)x(u) ] =l { (L(t-u) W(t-u) - L1(t-u) W,(t-u) ) cos 2ng(t-u)
- (L1 (t-u) W(t-u) + L(t-u) W, (t-u) ) sin 27rA(t-u) ).[C.26]

which is an even function of (t-u) only and will be denoted Z(t-u).The
average reverberation power over the analysis period is R if

L(O) W(0) = K. [C.271

The function W is scaled by equation [2.2) so that equation [0.27) scales
the product of V and L.

In the cases considered in section 4 and 5, equation [C,26] becomes (
E[ x(t)x(u) I - (R/K) L(t-u) W(t-u) cos 2i/g(t-u) [C.28)

where L and W are given by equations [C.24] and [C.18j with V(v)=l. Fromequations [2.2] and [C. 18], W(O)=K so that equation [C.27] implies
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L(0)-1. [C.29]

Substituting Z(t-u) for E[ x(t)x(u) ] in equation [2.11] gives

T T

2-0 Z(v) v H(t) H(t-v) cos (N(t)-N(t-v)+2nfv) dt dv [C.30]
T T-

-0.51T Z(v) f T H1(w-v) H1(w+v) Cos (N1 (w-v)-N, (w+v)+2irfv) dt dv
-T+v

where 
[C.31]

H1 (x) - H( (T-x)/2) [C.32]
Nl(x) - N( (T-x)/2). [C.33]

Define

T
H(v) - f H(t) H(t-v) cos (N(t)-N(t-v)) dt [C.34]

V

.T-v

- 0.51 H1 (w-v) H, (w+v) Cos (N1 (w-v)-N, (w+v)) dw [C.35]
-T+v

T

Hj(v) - f H(t) H(t-v) sin (N(t)-N(t-v)) dt [C.36]

Tv

- 0.51V H,(w-v) H,(w+v) sin (Nj (w-v)-N1 (w+v)) dt [0.37]
r -T+V

which are directly analogous to the definitions of W and W1. Equation

[C.31] then becomes

,T
- (RoK) { ( L(v) W(v) - L,(v) W((v)) H(v) cos 27rgv cos 2,rfv (- ( L, (v) W(v) + L(v) W1 (v) ) -(v) sin 27cgv cos 2v fv

- ( L(v) W(v) - Ll(v) Wl(v)) H,(v) cos 2ilgv sin 2tfv

+ ( L. (v) W(v) + L(v) W1 (v) ) H1 (v) sin 2ng.v sin 21cfv } dv.

[C.38]
Each of the products of sin or cos may be written as the sum of two sin or
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cos terms with argument 2n(f-.)v and 2ir(f+g)v. The integrals containing
the second of these arguments will be small compared with those
containing the first if (f-.)T << (f+g)T, as in practical situations. Thus in
the cases considered in section 4 and 5 where H and N are symmetric about
T/2,

T

2 R/2K Jo L(v) W(v) H(v) cos 27r(f-j)v dv [C.39]

H(v) - f H1 (w-v) H1 (w+v) cos (N, (w-v)-N1 (w+v)) dw [C.40]0

H1(v) -0. [C.41]

The additional assumptions made in sections 4 and 5 are listed below.
Some effects of varying these assumptions are described in the following
sections.

(1) The start of the signal coincides with the start of the analysis period
ie 0=0 in equation [2.7].

(2) The analysis and signal frequencies coincide ie fl =f.

(3) The duration of the signal equals the duration of the analysis period
ie T=K

(4) The scatterers have constant properties for times equal to the length
of the analysis period ie V(v)=l.

(5) The scatterers are independent for different path lengths ie X(v)=a(v).

K
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C. I The Start of the Signal and Analysis Period Coincide

The condition D00 (ie the start of the signal and analysis periods
coincide) is required for equations 14.20] or [4.27] to be valid for QV

However if D>O (but all the other assumptions are unchanged), the values
of o"2 are unchanged but Q1 is given by

Q 2 
- W(t-0) H(t) cos ( M(t-D) - N(t) )dt)2 +

W(t-D) H(t) sin (M(t-D) - N(t) )dr)2  [C.421

If D<O a similar expression for Q1
2 may be written with different

integration limits. The lower limit becomes zero and the upper limit
T+D=T- I 101. On letting t-t-D, an equation equivalent to [C.421 may be

derived in which H and W are interchanged, M and N are interchanged and D
is replaced by I D 1. In the ?ollowing D>0 only will be considered, as D<0
gives identical results by interchanging shaping and shading.

For CW pulses and each of the combinations of H(t) and W(t) used in
section 4, the degradation in P is presented in figure 29 for values of D/T
between 0 and 1. This is the same as figure 2 except that here the
degradation is taken relative to its value when D=0, not necessarily
relative to its optimal value.If there is no overlapping of analysis periods,
the maximum degradation will occur if the signal starts at time T/2 (if it
starts at a later time during the period, the next period will contain the
signal for a longer time and it should be considered with 0<0, giving
identical results to those in the figure) and corresponds to D/T,0.5. If the

analysis periods overlap, the maximum will correspond to a lower value of
D/T, but more processing will be required and the false alarm rate may be
increased due to the increase in the number of analysis periods per unit of

time. Of course the overlapping periods will not be independent so that
this increase may not be significant.

For FM pulses with M(t)-N(t),1"

01 (2 o W(t-D) H(t) cos ( M(t-D) - M(t) )dt)2 +
T

W(t-D) H(t) sin (M(t-D) - M(t) )dt)2  [C.43]
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For a chirp pulse where M(t) is given by equation [4.23],

1• D ("W(t-D) H(t) cos 2n{ {2D(t-T/2) - D,2}dt)

rT

(Do W(t-D) H(t) sin 2no { 2D(t-T/2) - D2 ) dt)2 .

- T2(J'Dr W((u-D/T)T) H(uT) cos ( 2nDu/S )du)2 +

T2(ID/r W((u-D1T)T) H(uT) sin (2n Du/S )du)2  [C.441
where S=(23T)-1 is the inverse of the FM bandwidth. When using FM pulses,
the analysis periods overlap and the start of successive intervals differ by
a time AT which should be set less than or equal to S. Figure 30 shows the
degradation in the gain for values of D/S between 0 and 5 (assuming that
S/T << 1 ie the bandwidth- pulse length product is large so that the lower
limits of integration in equation [C.44] may be set equal to zero). If the
starting times of the analysis periods are separated by AT-S, the
maximum degradation will occur when D/S - 0.5 and is about 4 dB with no
shading or shaping, but is rather less (at most 1.5 dB) otherwise. For small
values of D/S (less than 1), the degradation is greatest when there is no
shading or shaping, indicating that a plot of processor output as a function
of analysis period start time would have a sharper peak corresponding to
the signal in this case. However, for larger values of D/S (at least 3) the
situation is reversed and the degradation is greater when the shading or
shaping schemes are used. Thus the "side lobes* in the plot will be lower.
This lowering of side lobes has important implications if there is another
unwanted signal. The use of shading and shaping may reduce its
interference effect, even if it is quite large.
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C.2 The Analysis and Signal Freauencies Coincide

The condition fWfl (ie the centre analysis frequency is the same as

the centre signal frequency) is required for equations [4.20] or [4.27] to be
valid. However, if f*.fl (and all other assumptions are unchanged except

that possibly D>0), the values of a2 are unchanged but Q1 is given by

T

a (1ý Wt-D) H(t) cos ( M(t-D) - N(t) + 2x(f- fl)t )dt)2 +

(D W(t-D) H(t) sin ( M(t-D) - N(t) + 2,r(f- fl)t )dt)2  [.5

For a CW pulse,

1

012 T 2(f0f. W((u-D/T)T) H(uT) cos (27 I f- f, Tu )du) 2 +

T2(D'Or W((u-DMT) H(uT) sin (2 I f- f, I Tu )du)2  [C.46]

which is exactly the same as equation [C.44] with D/S replaced by (f-f1)T,

so that figure 30 also shows the degradation in P due to the frequency
mismatch for values of I f-f1 I T between 0 and 5 if D=0. As it would be

expected that the frequency bins would be separated by at most Af=T 1 ,
the maximum loss due to frequency mismatch would correspond to
I f'f, I T=0.5 or 4 dB with no shading or shaping. As for the FM case, the

signal spectral peak is broader using shading or shaping, but the side lobes
are lower, improving the rejection of a strong unwanted signal at another
frequency.

The combined effect of having D-0 and f;f 1 is illustrated in figure

31, where the degradation in P is plotted as a function of (f-f )T for

selected values of D/T and no shading or shaping. Notice that the worst
case of DIT-0.5 and (f-fl)T=0.5 gives a degradation of about 6 dB.

For an FM chirp pulse,
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0 1
2 - T2(jD/r W((u-D/T)T) H(uT) cos (2it(D/S+(f- fl)T)u )du) 2 +

T2(jDfr W((u-D/T)T) H(uT) sin (21c(D/S+(f- fl)T)u )du) 2  [C.47]

In this case, the detection algorithm is performed at one centre frequency
only (so that f-F, the transmitted pulse centre frequency). Hence, even if
D-0, I f-f1 I T can be quite large if there is significant doppler shift in the

signal return. If I f-fj I T>0.5, a different analysis period would give the

largest processor output so the estimated range to the target would be in
error - the largest output may be estimated by adding an integer multiple
of S to D such that q= I D/S+(f-f1)T 1(50.5. Figure 30 shows the degradation

in P as a function of q in the case where I D I/T is zero or close enough to
zero to be ignored. The degradation for values of q>0.5 correspond to the
reduction in echo in range cells neighbouring the one with maximum
response. If the frequency shift is such that I1D 1/T may not be ignored,
figure 31 shows the degradation in P as a function of q and selected values
of I D l/T in the case of no shading or shaping.
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C.3 The Pulse and the Analysis Period Have Eaual Length

Equality in the length of the pulse K and the length of the analysis
period T is necessary for the equation [4.20] or [4.27] for 012 to be valid.

If T-K, these equations should be replaced by

minlT,(T+K)/2I
Q12 max-oO,(T.K)W2 W(t-(T-K)/2) H(t) It)2 [C.48]

if it is assumed that the signal pulse and analysis period are aligned so
that their centres coincide (ie the frequency modulation of the signal and
the analysis replica are the same throughout the integration period). This
alignment gives the gretest value of Q12. The values of o2 are also changed

in this case. Since W(v)-0 unless 0:5v<K,

minrr.K]
02 - R/2K o L(v) W(v) H(v) cos 2n(f-I±)v dv [C.49]

"-/2 " 0 L(Ku) W(Ku) H(Ku) cos ou du [C.50]

where u - v/K, vy - min[1 ,T/K] and wo - 2n(f-p.)K.

For CW pulses, the gain as a function of co is shown in figures 32 to 40
in the case where L(v)-1 (case 1 from table 1) for T/K taking the values
0.1, 0.5, 0.9, 1.0, 1.1 and 2.0. The case T/K M 10. is also included in figures
36, 38 and 40, but not in the others as the line is strongly oscillatory and
tends to obscure the other lines. The figures show the 9 possible
combinations of shading and shaping functions from tables 2 and 3. In this
case, the quantity J from section 5.1 (the integral in equation [C.50]) may
be written

J "(ns)(V) sin o)V s(2n )(V)cos (' - S(2n+1)(0)

- (-)~I+ I(0.51]
n- 0n. I2r+2)

where

S(u) - W(Ku) H(Ku).
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Now S(vl).0 since W(1-00 and H(I)-0, but in this case,

K W()H'(T) ifT<KS, (v [C.52]

K W(K) H(K) 5 T > K.

For the shading and shaping functions from tables 2 and 3, S(-q) is
non-zero for T<K unless cos shading is used and S'(-) is non-zero for T>K
unless cos shaping is used. This is different from the results of sectiun
5.1 and explains the oscillations in figures 32 and 33 and the lack of
oscillations for some lines in figures 37, 38 and 40. Note also that

S'(0) - K ( T W(0) + K H'(0)) [C.53]

so that &'(0) is non-zero unless both cos shading and shaping are used as in
section 5.1. Hence the gain will increase with w2 (ie 6 dB per doubling of o)
except where cos shaping and shading are used. If both cos shaping and
shading are used, S'(0)mS'(N,)=S"v)=S'(0)nS"'(i)-S( 4k(•v)=0 and

-K5 W(T) H"(0) if T K

)( -K5 W"(0) H(K) if T > K.

S(5)(0) - K5 ( T W 5s)(0) + K H(s)(0)) [C.55]
- - K5 (T {W"(0)} 2 + K {H"(0)}2 )

Hence the gain oscillates in this case also but is proportional to 0 as may
be seen in figure 34. In figures 35 and 36, it would be expected that there
would be oscillatory behaviour for both T<K and T>K, since S'(V-)*O.

However S'(V) is very small if T<K in figure 35 or if T>K in figure 36 since
H(0) or W(0) are very small in the respective cases. Thus the oscillations
are present but not noticeable in these figures. In figure 39, it would be
expected that there would be no oscillation if T<K since S'(V)-O. However,

S'(0) is small and for the values of o being considered, an oscillation from
a higher order term in equation [C.51] gives the (reducing) oscillatory
behaviour In this case. This effect also explains the small oscillations
then T/K=O.1 in figure 37 and when T/K-10 in figure 40.
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For an FM chirp pulse, the analysis of section 5.2 gives the result
(similar to equation [5.25]) that when o.,0

J - T2 y •" L(vKIy) W(vK/y) H(vK/-) dv [C.56]

where

y = 2iiK 2  [C.57]

Hence = -m in [1,T/K ]. 

[C.58)

J x [0.59]

where

x lin L(vK/y) W(vK/") H(vK/y) dv. [C.60]

- hl(v) h2 (v) dv. [C.611

where

hl (v) = o W1
2 (Kw) cos vwdw [C.621

11
h2(v) = JO H1

2(Kw) cos vw dw [C.63]

Substituting equations [C.62] and [C.63] into equation [C.61] gives

x =lim XW)

where

() 0 H1
2(Kw) W1

2(Kx) 0 (cos(w-x)v+cos(w+x)v) dv dx dw
[C.64]

S0.5 H1
2(Kw) W1

2 (Kx) sin (w-x)/ (w-x) dx dw + 00

[0.65]
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where the additional terms are grouped together into the term 00. These
terms QQ may all be expressed in the form

fb
J g(x) sin Xx dx
a

where g(x) is integrable in the Riemann sense. Riemann's lemma(see, for
example reference [4], page 40) states that integrals of this form approach
zero as --+-,, so that QQ0+0 as X-ý-• and 00. Ignoring Q0 and letting
u.(w-x) in equation [C.65],

X(%) o f(u) sin ku / u du [C.66]

where

f(u) = u H1
2 (Kw) W1

2(K(w-u/X)) dw. [C.67]

Provided that (f(u)-f(0))/u is integrable for 0:_u<_y (which will be true for
any sensible shaping or shading functions), Riemann's lemma implies

0 (f(u) - f(O)) sin ku / u du -ý0 [C.68]

as Xo. Hence

X - f(0) lim 0 sin u/udu [C.69]

-(d2) o0 H1
2(Kw) W1

2(Kw) dw. [C.70]

This justifies equation [5.33] in the case where T=K.

By substituting the expression for J given by equations [C.59] and
[C.70] into equation [5.1] and noting that equation (C.48] may be rewritten

Q12 - K2 ( 0 W,(Ku) H,(Ku) du)2  [C.71]
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the gain G may be written

(OG - y 0 W(Ku) H,(Ku) du)2 / x f W 2 (Ku) H 2 (Ku) du. [C.72]

This may be maximised by choosing shading and shaping functions such
that W, (Ku) H1 (Ku) - 1 eg no shading or shaping. The gain is independent of

T/K for T/K>1 if there is no shading, but if other shading functions are
used, since H1 depends on T, the gain does depend on T/K.
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C.4 The Scatterers have Constant Pmoerties

This condition is necessary in order that V(v)-l and the functions L(v)
in table I be valid. If the scatterers do not have constant properties (ie
the target strength or speed or position of the scatterers changes during a
time period equal in length to the pulse), then V(v) will be a
non-increasing, non-negative function, scaled so that V(O)-I. The

functions L(v) in table I should then be multiplied by V(v). If the new
function L(v) is of the form of one of the functions in table 1, then the
graphs in figures 4 to 21 may be used to deteremine the gain for a CW
pulse. Alternatively, the analysis in section 5 shows that for large w) the

gain depends only on L'(0) (or if this is zero, on the lowest derivative of L
which is non-zero at the origin). The gain for an FM pulse is probably
unaffected as previously noted in sections 4 and 5 for all but small values

-of y.
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C.5 The Scatterers are Indeoendent
If the scatterers are independent for different path lengths, then

X(v)-S(v) in equation [C.1]. However, multiple paths to and from a single
scatterer may have different lengths, and it is possible that there may be
some small correlation between scattered pulses arriving at slightly
different times, so that X(v) may be non-zero over a region of non-zero
length. Alternatively, the scatterers may form a periodic structure (eg
ocean waves) so that the amplitudes of scattered pulses arriving at times
differing by a constant may be correlated. In this case, X(v) may be of the
form

N
X(v) - aO 8(v) + I a, (6(v-vi) + 6(v+vi)) [C.69]

61.

Although the form of X(v) may not be known, the following gives an

indication of the changes required to the analysis of section 5 if X(v)*8(v).

The function W (defined by equations [C.5] and [C.6]) may be written

W(v (X(v+u) + X(v-u) ) Wo(u) du [C.70]

where Wo(u) is the function W in the case where X(v) is equal to 6(v). The

function X is scaled so that W(0) - K as before. The expressions for Q1
2 , L,

H that are used in sections 4 and 5 remain unchanged.

4 For a CW pulse, the important difference of a more general X(v) on the

analysis of section 5.1 is that, even for cos shaping, W(t) may not be zero.
In this case, the gain will be oscillatory for large w, since S(2n+1)(1) will

be non-zero for the smallest value of n for which S(2n+')(0) is non-zero.
For example, if L(v)-1 and H'(0)*O, then

S'(0) - T2 ( H'(O)+W(0)) • 0 [C.71]

&'(1) - T H'R W(T) s 0 [C.72]

since H'(T) - H'(0). Thus,
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J T H'(T) W(T) cos o) - T (H'(O)+W(O))) /w2 [C.73]

and the gain is proportional to W and oscillatory. If X(v) may be written

X(v) - a 8(v) + b X1 (V) [C.74]

where X,(v) is even, non-negative and is either bounded or consists of the

sum of delta functions, none of which is centred at v-0 or v-±K, then the
contribution to W(O) from X, (v) is zero and

W(O) - aWe'(O). [C.75]

However,

W(T) - 1( XI(T+u) + X1(T-u) ) We(u) du [C.76]

so that an increase in b, which probably gives a decrease in a in order that

T

W(O) - aK+2b I X1(u)Wo(u)du - T, [C.77]

increases the oscillatory component of the gain but may decrease the
non-oscillatory component. If W(T) - 0 (which would be fortuitous rather
than planned if b*0 due to the uncertain nature of the function X(v)), the
oscillatory term is zero and the larger b is compared with a, the larger
will be the gain. In fadt if a-0 (as assumed incidently in the base case in
section 4), W(0).O even with a shaping function which is non-zero at the
endpoints of the pulse. In this case, selecting the shading function such
that H(0)-H(T)-0 so that H'(0)-O is sufficient to ensure that the gain is
proportional to o4 ( or higher powers), still assuming that L(v)-l. The
shaping function is then only relevant in determining the proportionality
factor. r
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